Информационный менеджмент
  • 2022 № 2 Прогнозирование развития гипертонической болезни с использованием моделей машинного обучения в подсистеме дистанционного кардиомониторинга

    Одна из задач персонализированной медицины заключается в построении новой организационной модели оказания медицинской помощи пациентам, основываясь на подборе индивидуальных лечебных, диагностических и превентивных средств, оптимально подходящих по особенностям организма. Современные методы искусственного интеллекта позволяют решать задачи подобного типа.
    Цель исследования – построение и применение прогностических моделей логистической регрессии и дерева решений с использованием методов машинного обучения для выявления пациентов с высоким риском развития гипертонической болезни без необходимости проведения инвазивных клинических процедур.
    Материалы и методы. Используется сформированный набор данных, состоящий из 395 записей о пациентах Воронежской городской клинической поликлиники № 1. Каждая запись содержит параметры пациентов: пол пациента; возраст пациента; индекс массы тела; окружность талии; окружность бедер; статус курения табака; статус употребления алкоголя; систолическое давление; диастолическое давление. Применяются методы машинного обучения для построения прогностических моделей.
    Результаты. Построены две модели прогнозирования развития гипертонической болезни, характеризующиеся высокими показателями точности классификации: модель логистической регрессии, предназначенная для расчета индивидуального риска пациента (точность 96%), и модель на основе деревьев решений, предназначенная для прогнозирования возможного заболевания пациента гипертонической болезнью и объяснения причин, по которым может происходить это заболевание (точность 92%).
    Выводы. Показана целесообразность применения методов машинного обучения при построении прогностических моделей по оценке состояния пациентов, обозначена возможность создания рекомендательного блока на основе полученных моделей в подсистеме дистанционного кардиомониторинга.

    Авторы: Белозерова Е. В., Данилов А. В., Исаенкова Е. А., Калинина Л. Б., Манерова О. А., Усов Ю. И.

    Темы: гипертоническая болезнь1 дерево решений1 логистическая регрессия1 машинное обучение3 прогнозирование3

    Подробнее >

  • Информатизация здравоохранения
  • 2023 № 6 Опыт применения технологий искусственного интеллекта для развития профилактического здравоохранения на примере Кировской области.

    Здравоохранение является одной из приоритетных отраслей для практического применения систем искусственного интеллекта (ИИ). В 2018 г. в Кировской области было принято решение запустить собственный региональный проект внедрения технологий ИИ с целью получения практического опыта и понимания особенностей, преимуществ и барьеров применения ИИ. В качестве приоритетного направления было выбрано совершенствование профилактической медицины. В качестве базового программного продукта была выбрана российская платформа прогнозной аналитики Webiomed. Реализация проекта включала 3 этапа: пилотную апробацию в 2019–2020 гг., промышленную эксплуатацию в режиме «второго мнения» в 2021–2022 гг. и внедрение в режиме цифрового помощника, запущенное в 2023 г. В результате реализации 1го и 2го
    этапов проекта удалось доказать, что главным преимуществом ИИ при анализе больших медицинских данных является автономная и высокая точность интерпретации имеющейся в ней информации. ИИ-система способна самостоятельно извлекать из электронных медицинских карт необходимые для анализа данные, сопоставлять их с данными прошлых периодов, оценивать динамику изменения показателей здоровья, выявлять появление опасных тенденций и факторов риска. Все вместе это позволяет формировать так называемые «цифровые профили» пациентов, которые в свою очередь представляют из себя ценный ресурс для поддержки принятия управленческих и клинических решений.

    Авторы: Курдюмов Д. А., Кашин А. В., Рябов Н. Ю., Новицкий Р. Э., Гусев А. В.

    Темы: большие данные2 здравоохранение40 искусственный интеллект8 кировская область1 машинное обучение3 оценка рисков1 прогнозная аналитика1 профилактическая медицина1

    Подробнее >

  • 2023 № 4 Основополагающие принципы стандартизации и систематизации информации о наборах данных для машинного обучения в медицинской диагностике

    О б о с н о в а н и е : Активное внедрение технологий искусственного интеллекта в сферу здравоохранения, которое мы наблюдаем в последние годы, способствует резкому росту количества медицинских данных, собираемых для разработки моделей машинного обучения, в том числе данных лучевой и инструментальной диагностики. Для решения различных задач в области цифровых медицинских технологий посредством алгоритмов машинного обучения создаются все новые и новые наборы данных, поэтому становятся актуальными проблемы их систематизации и стандартизации, хранения, доступа, рационального
    и безопасного использования.
    Ц е л ь : разработка подхода к систематизации и стандартизации информации о наборах данных для решения вопросов представления, хранения, применения и оптимизации использования наборов данных и обеспечения безопасности и прозрачности процессов разработки и испытаний медицинских изделий с использованием искусственного интеллекта.
    М е т о д ы : анализ собственного и мирового опыта по созданию и использованию медицинских наборов данных, поиск и анализ медицинских справочников, разработка и обоснование структуры реестра, поиск научных публикаций с ключевыми словами «наборы данных», «реестр медицинских данных», размещенных в реферативных базах данных РИНЦ, Scopus, Web of Science.
    Р е з у л ь т а т ы . Разработана структура реестра наборов данных в медицинской инструментальной диагностике с разделами, отражающими информацию по всем этапам формирования и использования наборов данных для машинного обучения: 7 параметров на этапе инициирования, 8 – на этапе планирования, 70 – карточка набора данных, 1 – смена версии, 14 – на этапе использования, всего – 100 параметров. В работе предлагается классификация наборов данных по цели их создания, классификация методов верификации данных, а также принципы формирования названий для стандартизации и наглядности представления наборов данных. Кроме того, освещены основные особенности организации ведения данного реестра: управление, качество данных, конфиденциальность и безопасность.
    В ы в о д ы . Впервые предлагается оригинальная технология структуризации и систематизации управления медицинскими наборами данных для инструментальной диагностики, в основу которой положены разработанная терминология и принципы классификации информации, что позволяет стандартизировать структуру информации о наборах данных для машинного обучения, обеспечивает централизацию хранения, удобный и быстрый доступ ко всей информации о наборе данных, а также прозрачность, надежность и воспроизводимость результатов в сфере искусственного интеллекта. Создание реестра дает возможность оперативно формировать наглядные библиотеки данных, позволяя обширному кругу исследователей, разработчиков и компаний выбирать наборы данных для своих задач, что обеспечивает их широкое использование, оптимизацию ресурсов и способствует быстрому развитию и внедрению искусственного интеллекта.

    Авторы: Васильев Ю. А., Бобровская Т. М., Арзамасов К. М., Четвериков С. Ф., Владзимирский А. В., Омелянская О. В., Андрейченко А. Е., Павлов Н. А., Анищенко Л. Н.

    Темы: библиотеки наборов данных для машинного обучения1 искусственный интеллект8 машинное обучение3 набор данных1 реестр1

    Подробнее >