Статьи с темой: «машинное обучение»
-
2022 № 2 Прогнозирование развития гипертонической болезни с использованием моделей машинного обучения в подсистеме дистанционного кардиомониторинга
Одна из задач персонализированной медицины заключается в построении новой организационной модели оказания медицинской помощи пациентам, основываясь на подборе индивидуальных лечебных, диагностических и превентивных средств, оптимально подходящих по особенностям организма. Современные методы искусственного интеллекта позволяют решать задачи подобного типа.
Цель исследования – построение и применение прогностических моделей логистической регрессии и дерева решений с использованием методов машинного обучения для выявления пациентов с высоким риском развития гипертонической болезни без необходимости проведения инвазивных клинических процедур.
Материалы и методы. Используется сформированный набор данных, состоящий из 395 записей о пациентах Воронежской городской клинической поликлиники № 1. Каждая запись содержит параметры пациентов: пол пациента; возраст пациента; индекс массы тела; окружность талии; окружность бедер; статус курения табака; статус употребления алкоголя; систолическое давление; диастолическое давление. Применяются методы машинного обучения для построения прогностических моделей.
Результаты. Построены две модели прогнозирования развития гипертонической болезни, характеризующиеся высокими показателями точности классификации: модель логистической регрессии, предназначенная для расчета индивидуального риска пациента (точность 96%), и модель на основе деревьев решений, предназначенная для прогнозирования возможного заболевания пациента гипертонической болезнью и объяснения причин, по которым может происходить это заболевание (точность 92%).
Выводы. Показана целесообразность применения методов машинного обучения при построении прогностических моделей по оценке состояния пациентов, обозначена возможность создания рекомендательного блока на основе полученных моделей в подсистеме дистанционного кардиомониторинга. -
2023 № 6 Опыт применения технологий искусственного интеллекта для развития профилактического здравоохранения на примере Кировской области.
Здравоохранение является одной из приоритетных отраслей для практического применения систем искусственного интеллекта (ИИ). В 2018 г. в Кировской области было принято решение запустить собственный региональный проект внедрения технологий ИИ с целью получения практического опыта и понимания особенностей, преимуществ и барьеров применения ИИ. В качестве приоритетного направления было выбрано совершенствование профилактической медицины. В качестве базового программного продукта была выбрана российская платформа прогнозной аналитики Webiomed. Реализация проекта включала 3 этапа: пилотную апробацию в 2019–2020 гг., промышленную эксплуатацию в режиме «второго мнения» в 2021–2022 гг. и внедрение в режиме цифрового помощника, запущенное в 2023 г. В результате реализации 1го и 2го
этапов проекта удалось доказать, что главным преимуществом ИИ при анализе больших медицинских данных является автономная и высокая точность интерпретации имеющейся в ней информации. ИИ-система способна самостоятельно извлекать из электронных медицинских карт необходимые для анализа данные, сопоставлять их с данными прошлых периодов, оценивать динамику изменения показателей здоровья, выявлять появление опасных тенденций и факторов риска. Все вместе это позволяет формировать так называемые «цифровые профили» пациентов, которые в свою очередь представляют из себя ценный ресурс для поддержки принятия управленческих и клинических решений. -
2023 № 4 Основополагающие принципы стандартизации и систематизации информации о наборах данных для машинного обучения в медицинской диагностике
О б о с н о в а н и е : Активное внедрение технологий искусственного интеллекта в сферу здравоохранения, которое мы наблюдаем в последние годы, способствует резкому росту количества медицинских данных, собираемых для разработки моделей машинного обучения, в том числе данных лучевой и инструментальной диагностики. Для решения различных задач в области цифровых медицинских технологий посредством алгоритмов машинного обучения создаются все новые и новые наборы данных, поэтому становятся актуальными проблемы их систематизации и стандартизации, хранения, доступа, рационального
и безопасного использования.
Ц е л ь : разработка подхода к систематизации и стандартизации информации о наборах данных для решения вопросов представления, хранения, применения и оптимизации использования наборов данных и обеспечения безопасности и прозрачности процессов разработки и испытаний медицинских изделий с использованием искусственного интеллекта.
М е т о д ы : анализ собственного и мирового опыта по созданию и использованию медицинских наборов данных, поиск и анализ медицинских справочников, разработка и обоснование структуры реестра, поиск научных публикаций с ключевыми словами «наборы данных», «реестр медицинских данных», размещенных в реферативных базах данных РИНЦ, Scopus, Web of Science.
Р е з у л ь т а т ы . Разработана структура реестра наборов данных в медицинской инструментальной диагностике с разделами, отражающими информацию по всем этапам формирования и использования наборов данных для машинного обучения: 7 параметров на этапе инициирования, 8 – на этапе планирования, 70 – карточка набора данных, 1 – смена версии, 14 – на этапе использования, всего – 100 параметров. В работе предлагается классификация наборов данных по цели их создания, классификация методов верификации данных, а также принципы формирования названий для стандартизации и наглядности представления наборов данных. Кроме того, освещены основные особенности организации ведения данного реестра: управление, качество данных, конфиденциальность и безопасность.
В ы в о д ы . Впервые предлагается оригинальная технология структуризации и систематизации управления медицинскими наборами данных для инструментальной диагностики, в основу которой положены разработанная терминология и принципы классификации информации, что позволяет стандартизировать структуру информации о наборах данных для машинного обучения, обеспечивает централизацию хранения, удобный и быстрый доступ ко всей информации о наборе данных, а также прозрачность, надежность и воспроизводимость результатов в сфере искусственного интеллекта. Создание реестра дает возможность оперативно формировать наглядные библиотеки данных, позволяя обширному кругу исследователей, разработчиков и компаний выбирать наборы данных для своих задач, что обеспечивает их широкое использование, оптимизацию ресурсов и способствует быстрому развитию и внедрению искусственного интеллекта.