Системы поддержки принятия решений
  • 2020 № 4 Алгоритм формирования подозрения на новую коронавирусную инфекцию на основе анализа симптомов для использования в системах поддержки принятия врачебных решений

    Течение пандемии COVID‑19 накладывает значительную нагрузку на системы здравоохранения, в том числе
    на первичное звено, когда необходимо правильно заподозрить и определить дальнейшую тактику. Неспецифичность симптомов и разносторонность проявлений COVID‑19 накладывают трудности для выявления подозрения на данное заболевание. Для улучшения определения COVID‑19 потенциально могут быть полезны симптом-чекеры и системы поддержки принятия врачебных решений (СППВР) с рекомендациями врачу для определения тактики ведения. Анализ научной литературы
    показывает многогранность проявлений и частоту встречаемости COVID‑19. Взяв за основу этот анализ, мы структурировали проявления по частоте встречаемости, классифицировали их как «большие» и «малые». Были определены правила их взаимодействий для расчёта уровня подозрения на COVID‑19. Каждому уровню подозрения были разработаны рекомендации по тактике ведения пациента. Для определения симптомов COVID‑19 в неструктурированных текстах электронных медицинских карт были обучены модели NLP. Точность моделей по метрике F-мера составила от 84,6% до 96,0%. Таким образом, был разработан алгоритм выявления подозрения на COVID‑19, который потенциально может быть использован в симптом-чекерах и СППВР для помощи врачам по определению COVID‑19 и поддержки принятия тактических действий.

    Авторы: Гаврилов Д. В. [4] Серова Л. М. [2] Кирилкина А. В. [1]

    Темы: covid-194 алгоритм подозрения на covid‑191 машинное обучение9 определение симптомов1 системы поддержки принятия врачебных решений5

    Подробнее >

  • Особое мнение
  • 2019 № 2 pdf Тренды и прогнозы развития медицинских информационных систем в России

    В настоящее время в России в целом сформирован рынок программных продуктов для медицины и здравоохранения. Требования государства к развитию информационных технологий для медицины постоянно растут. Начиная с 2019 года объем финансирования будет существенно увеличен. Главной статьей затрат в 2019–2024 гг. будет разработка, развитие и внедрение различных информационных систем для регионального здравоохранения, предусмотренных федеральной программой «Создание единого цифрового контура в сфере здравоохранения». В работе систематизированы наблюдения авторов и прогнозы о том, какие же главные тренды окажут наибольшее влияние на изменение рынка медицинских информационных систем (МИС), и к чему это приведет. Среди основных драйверов и прогнозов рынка: концентрация внимания врача и разработчиков МИС не вокруг ведения электронных документов, а вокруг различных аспектов здоровья и жизни пациента. В области управления взаимоотношениями с пациентами начнется внедрение в практику концепции Patient Relationship Management (PRM). К МИС будут расти требования в части оптимизации лечебно-диагностических процессов, поддержки клинических протоколов и непрерывного аудита качества оказания медицинской помощи. Продолжится развитие систем в сторону централизации, перехода на «облачную» модель работы, включая SaaS, а также импортозамещения. Число разработчиков будет постепенно сокращаться, что приведет к консолидации и укрупнению рынка. Будет расти спрос на интеграцию в МИС систем поддержки принятия врачебных решений, построенных с помощью машинного обучения. Все это в комплексе будет способствовать цифровой трансформации отрасли.

    Авторы: Гусев А. В. [32] Новицкий Р. Э. [5] Плисс М. А. [2] Левин М. Б. [1]

    Темы: искусственный интеллект13 машинное обучение9 медицинские информационные системы46 системы поддержки принятия врачебных решений5 цифровая трансформация2 электронная медицинская карта15

    Полная версия статьи в формате PDF
    3.5 МБ

    Подробнее >

  • Искусственный интеллект в здравоохранении
  • 2018 № ИТМ pdf Преодоление проблемы «черного ящика» при использовании методов машинного обучения в медицине

    Предложен интерфейс прогноза в машинном обучении, с использованием метода оптимально достоверных разбиений (ОДР) и модифицированного метода статистически взвешенных синдромов (МСВС). Интерфейс позволяет преодолеть проблему «черного ящика»: иллюстрировать процесс прогнозирования с помощью диаграмм рассеяния, ROC-кривой и ранжирования набора информативных показателей с показом расположения исследуемого объекта.

    Авторы: Кузнецова А. В. [3] Сенько. О. В. [3] Кузнецова Ю. О. [1]

    Темы: машинное обучение9 прогнозирование5

    Полная версия статьи в формате PDF
    3.6 МБ

    Подробнее >

  • 2017 № 2 Определение факторов риска сердечно-сосудистой летальности в учреждениях уголовно-исполнительной системы с использованием методов машинного обучения.

    В статье представлены результаты первого клинико-эпидемиологического исследования по выявлению факторов риска летального исхода сердечно-сосудистых заболеваниий у пациентов лечебных учреждениий уголовно- исполнительной системы. В исследовании применялись методы машинного обучения, основанные на построении оптимальных разбиениий признакового пространства, и методы распознавания. Это с высокой достоверностью позволило определить предиктивные факторы госпитальной летальности кардиологического больного, которыми стали: употребление крепкого тонизирующего напитка «чифир», возраст, вес, рост, систолическое и диастолическое артериальное давление, уровень гемоглобина, частота сердечных сокращениий, фракция выброса левого желудочка, конечный систолический и конечный диастолическийй размер левого желудочка, наличие артериальной гипертензии и число судимостей.

    Авторы: Дюжева Е. В. [2] Кузнецова А. В. [3] Сенько. О. В. [3]

    Темы: машинное обучение9 методы оптимального разбиения1 распознавание1 сердечно-сосудистые заболевания4 уголовно-исполнительная система2

    Подробнее >

  • 2020 № 4 Технологии прогнозной аналитики в борьбе с пандемией COVID‑19

    В последнее время новая коронавирусная инфекция или COVID‑19, вызванная возбудителем SARS-CoV‑2,
    продолжает быстрое распространение по всему миру. По мнению Всемирной организации здравоохранения (ВОЗ), объявившей эту вспышку пандемией, COVID‑19 является серьезной проблемой для общественного здравоохранения, имеющей международное значение. Из-за отсутствия доказанного эффективного лечения и вакцинации против COVID‑19 меры предосторожности считаются ВОЗ стратегическими целями и основным способом противодействия пандемии. Руководствам стран рекомендовано принять национальные программы медицинского обслуживания, направленные на оценку и снижение риска распространения инфекции. На этом фоне технологии прогнозной аналитики стали активно использоваться для составления популяционных и персональных прогнозов развития заболеваемости, смертности, оценки тяжести течения
    болезни и т. д. В данной статье представлен обзор имеющихся разработок и публикаций по теме применения прогнозной аналитики для борьбы с пандемией COVID‑19.

    Авторы: Гусев А. В. [32] Новицкий Р. Э. [5]

    Темы: covid-194 dashboard1 искусственный интеллект13 машинное обучение9 прогнозная аналитика1 программное обеспечение5

    Подробнее >

  • 2019 № 2 Применение нейросетевых методов машинного обучения в лечении осложнений у пациентов на гемодиализе

    В работе описывается комплексная система автоматизированного формирования программы коррекции анемии у пациентов с терминальной стадией хронической болезни почек.
    Показано, что созданная система позволяет сформировать медикаментозную терапию, адекватную текущему состоянию и динамике состояния пациента, даже в ситуациях, когда терапия ранее не проводилась. В системе использован метод сочетания нейронных сетей, обученных на существующей клинической прецедентной базе адекватной коррекции анемии, и триггерной модели выбора дозировки медикаментозной терапии. В качестве примеров приведен опыт эксплуатации созданной системы в отделении гемодиализа г. Костромы МЧУ ДПО «Нефросовет», для формирования программы лечения 10 пациентов. Приведена общая схема построенной системы и ее детальное описание.

    Авторы: Новицкий В. О. [6] Малкоч А. В. [2] Зиновьев Д. А. [1]

    Темы: гемодиализ4 искусственный интеллект13 коррекция анемии1 машинное обучение9 нейронные сети11 хроническая болезнь почек1

    Подробнее >

  • 2018 № 3 pdf Основные рекомендации к созданию и развитию систем на базе искусственного интеллекта

    Искусственный интеллект становится одним из основных драйверов в решении серьезных проблем медицины и здравоохранения, таких как недостаточность ресурсов, дальнейшее повышение эффективности, качества и скорости работы. Во всем мире создаются все новые и новые решения в этой области. Однако, чем больше появляется новых продуктов, тем больше вопросов и проблем поднимается.

    В работе проанализированы некоторые зарубежные публикации и результаты исследований, в которых изучались основные проблемы, связанные с созданием и внедрением систем искусственного интеллекта в здравоохранении. В результате анализа был сформулирован ряд практических рекомендаций, которые помогут повысить вероятность успешного создания и внедрения таких продуктов в практическом звене здравоохранения.

    Авторы: Гусев А. В. [32] Плисс М. А. [2]

    Темы: здравоохранение16 искусственный интеллект13 машинное обучение9 медицина6 нейронные сети11

    Полная версия статьи в формате PDF
    4.6 МБ

    Подробнее >

  • 2017 № 3 pdf Перспективы нейронных сетей и глубокого машинного обучения в создании решений для здравоохранения

    В работе приведен обзор перспектив применения нейронных сетей и глубокого машинного обучения в создании систем искусственного интеллекта для здравоохранения. Приводится определение и пояснения по технологиям машинного обучения и нейронных сетей. Представлен обзор уже реализованных проектов применения искусственного интеллекта, а также дается прогноз наиболее перспективных, по мнению автора, направлений развития в ближайшее время

    Авторы: Гусев А. В. [32]

    Темы: здравоохранение16 искусственный интеллект13 машинное обучение9 медицина6 нейронные сети11

    Полная версия статьи в формате PDF
    7.5 МБ

    Подробнее >

  • 2019 № 3 pdf Перспективы использования методов машинного обучения для предсказания сердечно-сосудистых заболеваний

    Заболеваемость и смертность от сердечно-сосудистых заболеваний (ССЗ) остается лидирующей на протяжении последних десятилетий в всем мире. Методы первичной профилактики, основанные на управлении факторами сердечно-сосудистого риска, являются наиболее эффективными для снижения бремени ССЗ. В профилактической медицине для управления рисками ССЗ используются рискометры – шкалы, полученные в результате длительных проспективных исследований. Но практическое применение разработанных шкал показало ограничения в точности прогнозирования. Машинное обучение дает возможность повысить точность прогнозирования сердечно-сосудистого риска за счет нелинейных взаимосвязей их более глубокой настройки между факторами риска и результатами заболеваний. Используя данные 2236 пациентов, нами была обучена модель по признакам, используемым в построении фрамингемской шкалы. Мы сравнили полученную модель и Фрамингемскую шкалу на точность прогнозасердечно-сосудистого события. Так, по ROC анализу для Фрамингемской шкалы показатели следующие: точность Accuracy: 70,0%, качество AUC: 0.59. При этом для модели, полученной с использованием машинного обучения, аналогичные показатели составили: Accuracy: 78,8%, AUC: 0.84. Таким образом, использование алгоритмов машинного обучения, включая алгоритмы глубокого обучения, могут значительно повысить точность прогнозирования сердечно-сосудистых рисков обученных моделей.

    Авторы: Гусев А. В. [32] Новицкий Р. Э. [5] Гаврилов Д. В. [4] Кузнецова Т. Ю. [2] Корсаков И. Н. [1] Серова Л. М. [2]

    Темы: здравоохранение16 искусственный интеллект13 машинное обучение9 медицина6 оценка рисков развития заболеваний1 сердечно-сосудистые заболевания4 факторы риска5

    Полная версия статьи в формате PDF
    3.7 МБ

    Подробнее >