Белозерова Е. В. - все статьи автора в журнале
-
2022 № 2 Прогнозирование развития гипертонической болезни с использованием моделей машинного обучения в подсистеме дистанционного кардиомониторинга
Одна из задач персонализированной медицины заключается в построении новой организационной модели оказания медицинской помощи пациентам, основываясь на подборе индивидуальных лечебных, диагностических и превентивных средств, оптимально подходящих по особенностям организма. Современные методы искусственного интеллекта позволяют решать задачи подобного типа.
Цель исследования – построение и применение прогностических моделей логистической регрессии и дерева решений с использованием методов машинного обучения для выявления пациентов с высоким риском развития гипертонической болезни без необходимости проведения инвазивных клинических процедур.
Материалы и методы. Используется сформированный набор данных, состоящий из 395 записей о пациентах Воронежской городской клинической поликлиники № 1. Каждая запись содержит параметры пациентов: пол пациента; возраст пациента; индекс массы тела; окружность талии; окружность бедер; статус курения табака; статус употребления алкоголя; систолическое давление; диастолическое давление. Применяются методы машинного обучения для построения прогностических моделей.
Результаты. Построены две модели прогнозирования развития гипертонической болезни, характеризующиеся высокими показателями точности классификации: модель логистической регрессии, предназначенная для расчета индивидуального риска пациента (точность 96%), и модель на основе деревьев решений, предназначенная для прогнозирования возможного заболевания пациента гипертонической болезнью и объяснения причин, по которым может происходить это заболевание (точность 92%).
Выводы. Показана целесообразность применения методов машинного обучения при построении прогностических моделей по оценке состояния пациентов, обозначена возможность создания рекомендательного блока на основе полученных моделей в подсистеме дистанционного кардиомониторинга.