Искусственный интеллект в здравоохранении
  • 2018 № ИТМ pdf Преодоление проблемы «черного ящика» при использовании методов машинного обучения в медицине

    Предложен интерфейс прогноза в машинном обучении, с использованием метода оптимально достоверных разбиений (ОДР) и модифицированного метода статистически взвешенных синдромов (МСВС). Интерфейс позволяет преодолеть проблему «черного ящика»: иллюстрировать процесс прогнозирования с помощью диаграмм рассеяния, ROC-кривой и ранжирования набора информативных показателей с показом расположения исследуемого объекта.

    Авторы: Кузнецова А. В. [3] Сенько. О. В. [3] Кузнецова Ю. О. [1]

    Темы: машинное обучение4 прогнозирование4

    Полная версия статьи в формате PDF
    3.6 МБ

    Подробнее >

  • 2017 № 2 Определение факторов риска сердечно-сосудистой летальности в учреждениях уголовно-исполнительной системы с использованием методов машинного обучения.

    В статье представлены результаты первого клинико-эпидемиологического исследования по выявлению факторов риска летального исхода сердечно-сосудистых заболеваниий у пациентов лечебных учреждениий уголовно- исполнительной системы. В исследовании применялись методы машинного обучения, основанные на построении оптимальных разбиениий признакового пространства, и методы распознавания. Это с высокой достоверностью позволило определить предиктивные факторы госпитальной летальности кардиологического больного, которыми стали: употребление крепкого тонизирующего напитка «чифир», возраст, вес, рост, систолическое и диастолическое артериальное давление, уровень гемоглобина, частота сердечных сокращениий, фракция выброса левого желудочка, конечный систолический и конечный диастолическийй размер левого желудочка, наличие артериальной гипертензии и число судимостей.

    Авторы: Дюжева Е. В. [2] Кузнецова А. В. [3] Сенько. О. В. [3]

    Темы: машинное обучение4 методы оптимального разбиения1 распознавание1 сердечно-сосудистые заболевания3 уголовно-исполнительная система2

    Подробнее >

  • 2017 № 3 pdf Перспективы нейронных сетей и глубокого машинного обучения в создании решений для здравоохранения

    В работе приведен обзор перспектив применения нейронных сетей и глубокого машинного обучения в создании систем искусственного интеллекта для здравоохранения. Приводится определение и пояснения по технологиям машинного обучения и нейронных сетей. Представлен обзор уже реализованных проектов применения искусственного интеллекта, а также дается прогноз наиболее перспективных, по мнению автора, направлений развития в ближайшее время

    Авторы: Гусев А. В. [29]

    Темы: здравоохранение12 искусственный интеллект4 машинное обучение4 медицина2 нейронные сети5

    Полная версия статьи в формате PDF
    7.5 МБ

    Подробнее >

  • 2018 № 3 Основные рекомендации к созданию и развитию систем на базе искусственного интеллекта

    Искусственный интеллект становится одним из основных драйверов в решении серьезных проблем медицины и здравоохранения, таких как недостаточность ресурсов, дальнейшее повышение эффективности, качества и скорости работы. Во всем мире создаются все новые и новые решения в этой области. Однако, чем больше появляется новых продуктов, тем больше вопросов и проблем поднимается.

    В работе проанализированы некоторые зарубежные публикации и результаты исследований, в которых изучались основные проблемы, связанные с созданием и внедрением систем искусственного интеллекта в здравоохранении. В результате анализа был сформулирован ряд практических рекомендаций, которые помогут повысить вероятность успешного создания и внедрения таких продуктов в практическом звене здравоохранения.

    Авторы: Гусев А. В. [29] Плисс М. А. [1]

    Темы: здравоохранение12 искусственный интеллект4 машинное обучение4 медицина2 нейронные сети5

    Подробнее >