Акиньшина В. А. - все статьи автора в журнале

    Искусственный интеллект в здравоохранении
  • 2018 № 4 Прогнозирование стадии распространения заболевания у пациентов, страдающих аденомиозом, нейронными сетями

    Аденомиоз – весьма распространенное гинекологическое заболевание, сопровождающееся, как правило, бесплодием. Есть проблемы с диагностикой заболевания, так как болезнь имеет различные клинические проявления, в том числе зачастую болезнь протекает бессимптомно. Из-за сложности диагностики по разным источникам его частота колеблется от 5% до 70%. Не менее сложной проблемой является определение стадии заболевания, определяющей тактику и стратегию лечения больных. По выборке из 84 больных, страдающих аденомиозом, посредством коэффициента ранговой корреляции Спирмена были выявлены показатели, взаимосвязанные со стадиями заболевания. В работе рассмотрено применение эвристической процедуры нейронные сети для прогнозирования по лабораторно-клиническим показателям стадии аденомиоза. Разработано программное приложение, которое позволяет предсказать стадию аденомиоза, не прибегая к гистерэктомии. Методологическая ценность работы в том, что на примере распространенного гинекологического заболевания показано, что применение современных средств анализа данных открывает широкие возможности решения прогностических задач определения принадлежности больных к определенным классам по стадиям или видам заболевания. Программные приложения, автоматизирующие процедуру классификации больных, могут лечь в основу различных систем поддержки принятия врачебных решений.

    Авторы: Халафян А. А. [4] Кошкаров А. А. [7] Акиньшина В. А. [2] Карахалис Л. Ю. [1] Папова Н. С. [1]

    Темы: аденомиоз1 медицинская система поддержки принятия решений2 нейронные сети6

    Подробнее >

  • Система поддержки принятия решений
  • 2018 № 2 Система поддержки принятия решений при выборе тактики коррекции стеноза внутренних сонных артерий

    Наряду с разработкой медицинских информационных систем важной является задача создания медицинских систем поддержки принятия решений (СППР), в частности, способных прогнозировать возможность послеоперационных осложнений. Компьютерные методы анализа данных позволяют успешно использовать как классические методы прикладной статистики, так и современные эвристические процедуры для выявления латентных (скрытых) знаний в базах данных больных с последующим построением прогностических моделей. В статье описана СППР, которая по клиническим показателям состояния больного до лечения и технологическим параметрам оперативного вмешательства автоматизирует прогнозирование возможности осложнений при оперативном лечении стеноза внутренних сонных артерий методами каротидной эндартерэктомии и ангиостентирования. В основе СППР лежат методы классификации на обучающей выборке, включающей сведения о больных, прошедших лечение, а также данные о наличии или отсутствии осложнений. Исследования, предваряющие разработку СППР, были реализованы в среде пакета STATISTICA. Ввод в программу автоматизирован. По команде пользователя необходимые для вычислений данные больного из таблицы Excel импортируются в модуль программы для предсказания возможности осложнений. Также по желанию пользователя результаты прогноза могут быть сохранены в исходной таблице.

    Авторы: Халафян А. А. [4] Кошкаров А. А. [7] Виноградов Р. А. [1] Акиньшина В. А. [2]

    Темы: ангиостентирование1 деревья классификации1 каротидная эндартерэктомия1 медицинская система поддержки принятия решений2 нейронные сети6

    Подробнее >